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In last two lectures, we talked about pinches, and two mechanisms of profile peaking: one is the thermo-
electric theory where we used ion mixing mode as an example to show the free energy gradient drives the
peaking; the other is the turbulent equi-partition pinch (TEP) where the geometric variation leads to the
peaking due to the homogenization process.

In this lecture, we will move on to the discussion about collisionless drift-waves (DWs) and trapped
electron modes (TEMs), which we will see that trapped electron modes can be treated as one application of
collisionless drift-waves. We’ll start from talking about the energetics in today’s lecture, which is important
for particle and heat transport problems.

1 Review – drift-waves and zonal flow

We have discussed the formulation of drift-waves in Lecture 3a-d. The Hasegawa-Mima (H-M) equation
gives the basic description of drift-waves, and we discussed its evolution and transport properties in terms
of PV (potential vorticity) conservation. Moreover, we extended the formulation by considering the parallel
current to obtain the Hasegawa-Wakatani (H-W) equation, and realised that non-adiabatic electron response
can lead to drift-wave instabilities.

One of the key features we discussed is the emergence of zonal flow from turbulence fluctuation, and
the zonal flow (or zonal corrugation) can serve as a sink of fluctuation energy. The zonal flow are the
radial components of 〈φ〉 = 〈φ〉(r), and the zonal corrugation, in simple drift-waves, is the zonal density δn.
These zonal structures are key elements of mode spectrum with kr only (kθ, k‖ = 0), and the waves refer to
components with non-zero kθ, k‖ and kr. The main difference between these two is that the zonal structure
does not induce radial flux, because kθ = 0 due to symmetry.

Zonal modes are modes with minimal consideration: (a). it has the minimal inertia, −ρ2s ddt∇
2
⊥
eφ
Te

as

compared to d
dt (1− ρ

2
s∇2
⊥) eφTe

; (b). it induces zero transport, since kθ = 0 due to symmetry; (c). it’s weakly
damped (k‖ = 0), so that other modes can be easily coupled to the zonal structure.

After we discussed the drift-wave – zonal flow system, we now continue to the collisionless drift-wave and
trapped electron modes. This system is a combination of resonant electrons (for collisionless DW, ω = k‖vth;
for TEM, ω = ωDε) and the negative dissipation (ω − ω∗ < 0). The resonant condition ω = ω̄Dε is also
known as collisionless TEM (CTEM). The magnetic curvature drift becomes important as we bounce-average
out the parallel streaming motion, so the wave frequency can resonate with the drift frequency ω = ω̄D. In
principle, the resonant ions and ion Landau damping may also come into play, and a good example is the
current-driven ion acoustic wave (CDIA). The current (mainly electron velocity) tends to destabilize, while
the ion Landau damping regulates the state. The interplay between the ion acoustics and the current drive
(kCs − kvd) is very similar to the negative dissapation (ω − ω∗) we discussed here. Moreover, the ion zonal
structures, like ion flows, also lead to intrinsic rotation which will be discussed later in this class.

In the following two lectures, we will focus on two sections:
(a). The energetics in collisionless drift-waves. The energetics with resonant particles and with zonal

structues are separately discussed in previous studies. For example, Sagdeev and Galeev, 1969 discussed the
energetics with resonant particles in their classic lecture notes on Nonlinear Plasma Theory. Diamond et
al., 2005 review discussed the energetics between waves and the zonal flow. In this lecture, we will put these
together and discuss the energetics in general.
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(b). Trapped electron modes. The TEM is more unstable compared to the collisionless drift-waves. The
wave-particle interaction for collisionless drift-wave happens on the particle streaming time-scale, 1/τT =
|k‖vth|, which can be extremely fast. TEM, on the other hand, has an interaction time-scale of 1/τDrift =
|ω̄D|. There’s sufficient time to establish the wave-particle correlation in TEM, thus leading to a stronger
mode. Also, TEM is universal, since it can be driven by density gradient ∇n and electron temperature
gradient ∇Te, meaning that TEM can still persist even when ITG becomes stable. There are more reasons
for us to be interested in TEM, such as that trapped electrons can couple to ITG drive, and that TEM limits
∇n due to the induced particle transport. When considering α particles, these energetic particles tends to
slow down and heat the electrons, which gives more free energy (∇Pe) to excite TEM.

2 Background knowledge on energetics

To study the energetics, we start from the quasi-linear theory in one-dimensional system (Q1D). The
evolution of the average distribution function follows the mean-fluctuation equation,

∂〈f〉
∂t

=
∂

∂v
D
∂

∂v
∂〈f〉

where D =
∑
k

q2

m2
|Ek|2

[
πδ(ω − kv) +

|γk|
ω2
k

] (1)

πδ(ω − kv) is the response from the resonant particles, and |γk|
ω2

k
is the response from nonresonant particles.

To utilize the quasi-linear theory, there are two implications: Firstly, we need overlapped islands in phase
space, which lead to stochasticity. This is the basis for the irreversibility of resonant diffusion. Secondly, to
validate the use of unperturbed orbits, the scattering wave field must have a faster changing rate than the
particle bouncing rate, k∆(w/k) > 1/τb. That is, the wave is quickly changing before the particle streaming
trajectories receive any influence.

There are two key energy theorems associated with the quasi-linear theory.

∂t(TWED) + ∂t(RPKED) = 0 (2)

∂t(TEED) + ∂t(PKED) = 0 (3)

where TWED - Total Wave Energy Density; RPKED - Resonant Particle Kinetic Energy Density; TEED -
Total Electric Energy Density; PKED - Particle Kinetic Energy Density.

Both of them are telling the energy conservation of the system, and note that TWED = TEED +
Nonresonant PKED. From the Poynting theorem, we can get the TWED evolution

∂t(TWED) +∇ · (WEDF) + 〈E · J〉 = 0

TWED = ωk
∂ε

∂ω

∣∣∣∣
k

|Ek|2

8π

WEDF = vgr

[
ωk

∂ε

∂ω

∣∣∣∣
k

]
|Ek|2

8π

(4)

In the formula, 〈E · J〉 is the heating term. WEDF refers to the wave energy density flux, which is simply
TWED multiply group velocity vgr = dω

dk . The group velocity can be very different for parallel and perpen-
dicular directions. For example, in the drift-acoustic wave, the parallel group velocity is mainly from the
acoustic coupling. If we look at the drift-acoustic dispersion relation,

1 + k2⊥ρ
2
s =

ω∗
ω

+
k2‖C

2
s

ω2
(5)

Apparently, if we omit the diamagnetic term, the parallel group velocity are just vgr,‖ = ∂ω
∂k‖

= Cs

1+k2⊥ρ
2
s
,

which stems from the parallel compressibility.
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3 Energetics for drift-waves

Apply the energy theorem to the drift-waves,

∂t(TWED) + ∂t(REED) + ∂t(RIED) + ∂t(ZED) = 0 (6)

The total wave energy density is balanced with the resonant electron energy density (REED), resonant ion
energy density (RIED and the zonal energy density (ZED). The resonent particle energies already appeared
in previous section, RPKED = REED +RIED, while the zonal energy is newly added to our discussion.

In general, the resonant electrons drives the wave and input energy into the wave through electron
cooling, the resonant ions damps the wave and extract the energy by ion heating. The zonal energy, which
contains both the flow and corrugation, also extract energy from the wave in most cases. To have a complete
energy balance, we should also have some knowledge on the zonal mode damping, such as viscosity, but it’s
independent from current total wave energy balance. Both fluid electrons (adiabatic Boltzmann electron)
and ions support the waves and they all runs into the energy balance of total wave energy.

Now, we have three players in the energy balance: the resonant particles, wave modes, and zonal struc-
tures. The interaction between the three can be important for understanding energetic particles (EPs). An
analog of zonal mode structure in one-dimensional system is soliton or double layer problem in space physics,
namely, a large-scale structure emerged in the system.

Consider the zonal-mean conservation from the Hasegawa-Wakatani model:

ρ2s
d

dt
∇2
⊥
eφ̃

Te
= D‖∇2

‖

(
eφ̃

Te
− ñ

n0

)
1

n0

d

dt
ñ+ ṽr

1

n0

∂〈n〉
∂r

= D‖∇2
‖

(
eφ̃

Te
− ñ

n0

) (7)

The zonal equation can then be obtained by averaging over θ and parallel direction, leaving radial dependency
only,

ρ2s
∂

∂t
∇2
r

e〈φ〉
Te

+
∂

∂r

〈
ṽr∇2

r

eφ̃

Te

〉
= 0

∂

∂t

〈δn〉
n0

+
∂

∂r

〈
ṽr
ñ

n0

〉
= 0

(8)

where 〈δn〉 is the zonal corrugation and 〈φ〉 is the zonal flow.
Although the zonal modes are coupled to the wave equations, they generally transfer in one-direction.

That is, the zonal flow 〈φ〉 is supported by the advection of wave perturbation φ̃, and the density corrugation
〈δn〉 is supported by the radial advection of density perturbation ñ. The saturation of the zonal structures
may thus require other damping mechanisms.

The total energy for the drift-wave can then be calculated as

E =

∫
d3x ρC2

s

( ñ

n0

)2

+ ρ2s

(
∇⊥

eφ̃

Te

)2
 (9)

The internal energy term
(
ñ
n0

)2
contains both the wave energy and the corrugation energy, and the kinetic

energy term
(
∇⊥ eφ̃Te

)2
contains both the wave and the flow energy. This system energy density is analogous

to the 1D ion-acoustic system discussed in physics 218a. More generally, the internal energy should contains
all the pressure energy (density and temperature). The parallel kinetic energy should also be included in the
internal energy if acoustic waves are considered in the formulation. For simplicity, in the later discussion we

will neglect the normalization factors to write eφ̃
Te

as φ̃ and ñ
n0

as ñ.
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Let’s first consider the internal energy balance, from wave equation, eq.(7)

∂

∂t
Eint,wave =

∂

∂t

∫
d3x

ñ2

2

= −
∫
d3x(〈ñṽr〉+ ñṽr)

∂

∂r
(〈δn〉+ ñ) +

∫
d3xñD‖∇2

‖

(
φ̃− ñ

)
= −

∫
d3x〈ñṽr〉

∂

∂r
〈δn〉 −

∫
d3x〈ñṽr〉

∂

∂r
ñ−

∫
d3x ñṽr

∂

∂r
〈δn〉

−
∫
d3x ñṽr

∂

∂r
ñ+

∫
d3xñD‖∇2

‖φ̃−
∫
d3xñD‖∇2

‖ñ

(10)

If we notice that the symmetry requires
∫
dθdz ñ =

∫
dθdz ñṽr = 0, we instantly remove

∫
d3x〈ñṽr〉 ∂∂r ñ =∫

d3x ñṽr
∂
∂r 〈δn〉 = 0. Then, do the integral by parts, we can rewrite D‖ terms and get

∂

∂t
Eint,wave = −

∫
d3x〈ñṽr〉

∂

∂r
〈δn〉 −

∫
d3x ñṽr

∂

∂r
ñ−

∫
d3x∇ñD‖∇‖φ̃+

∫
d3xD‖(∇‖ñ)2 (11)

The first term denotes the energy flow into the zonal density corrugation. If we do a similar calculation for
the zonal corrugation, eq.(8),

∂

∂t
Eint,zonal =

∂

∂t

∫
d3x
〈δn〉2

2
= −

∫
d3x〈δn〉 ∂

∂r
〈ṽrñ〉 =

∫
d3x 〈ṽrñ〉

∂

∂r
〈δn〉 (12)

We can see that the energy is balanced between the wave and the zonal structure. The total internal energy
now gives

∂

∂t
Eint = −

∫
d3x ñṽr

∂

∂r
ñ+

∫
d3xD‖∇‖ñ(∇‖ñ−∇‖φ̃) (13)

where the first term is the wave-wave coupling. The second term relates to the parallel collisionality D‖.
For the kinetic energy, again we can obtain the energy balance for the wave and the zonal flow,

∂

∂t
Ek,wave = ρ2s

∫
d3x

∂

∂t

(∇rφ̃)2

2
= −

∫
d3x φ̃ρ2s

∂

∂t
∇2
rφ̃

=

∫
d3x〈φ̃ṽr〉

∂

∂r
(ρ2s∇2

r〈φ〉) +

∫
d3x φ̃ṽr

∂

∂r
(ρ2s∇2

rφ̃)

+

∫
d3xD‖(∇‖φ̃)2 −

∫
d3x∇φ̃D‖∇‖ñ

= −ρ2s
∫
d3x〈ṽr∇rφ̃〉

∂

∂r
∇r〈φ〉 − ρ2s

∫
d3x ṽr∇rφ̃

∂

∂r
∇rφ̃

+

∫
d3xD‖∇‖φ̃(∇‖φ̃−∇‖ñ)

(14)

∂

∂t
Ek,zonal = ρ2s

∫
d3x

∂

∂t

(∇r〈φ〉)2

2
= −

∫
d3x〈φ〉ρ2s

∂

∂t
∇2
r〈φ〉

= ρ2s

∫
d3x〈φ〉 ∂

∂r

〈
ṽr∇2

rφ̃
〉

= ρ2s

∫
d3x

〈
ṽr∇rφ̃

〉 ∂

∂r
∇r〈φ〉

(15)

The Taylor idensity is used to derive eq.(15), i.e.
〈
ṽr∇2

rφ̃
〉

= ∇r
〈
ṽr∇rφ̃

〉
. Similarly, the zonal flow is

balanced with the wave kinetic energy, and only the wave-wave coupling terms and parallel collisionality
terms remains. For Boltzmann response φ̃ = ñ, so that the collisional terms cancel each other if we sum over
the internal and the kinetic energy. D‖ terms should be a higher-order residue for the energy conservation.

Back to the interaction between the zonal corrugation and the drift-wave, the energy transport is realized
by the radial flux 〈ṽrñ〉. For H-W system, i.e. electron drift-wave, the zonal density effect can be weak for
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α =
k2‖v

2
th

ωνcoll
> 1, and the zonal flow should dominate the case. To show this, we’ve already calculated the flux

due to EDW in Lecture 3b,

〈ṽrñ〉 = 〈ṽrh̃〉 =
∑
k

ρsCs

∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

kθ(k
2
⊥ρ

2
s)ω∗

(1 + k2⊥ρ
2
s)k

2
‖D‖

(16)

which is on the order of O( ω
k2‖D‖

) = O( 1
α ). However, for collisionless TEM, this isn’t true as we will see in

later discussion. For CTEM,

〈ṽrñ〉 ∼= −
∑
k

〈v̄r〉2k
∆ωk
ω2
∗
∇〈n〉 −Dres∇〈n〉 (17)

The non-resonant response is a nonlinear wave-particle processes, leading to a beat-wave interaction πδ(ω+
ω∗ − ω̄Dε− ω̄′Dε) and nonlinear Landau damping of trapped electrons. ∆ωk is on the order of ( eφTe

)2, which

results in a total of ( eφTe
)4 dependency for the non-resonant part. The resonant contribution Dres then plays

an important role to give interesting coupling of resonant electrons to the density corrugation.

4 Energetics for collisionless drift-waves

For collisionless drift-waves, recall the basic assumption, vthi ≤ ω
k‖
� vthe, that the phase velocity is

between the ion thermal velocity and the electron thermal velocity. By including the non-adiabatic response,
ñe

n = eφ̃
Te

+ h̃, the corrected Hasegawa-Mima model (”iδ” model) with the zonal flow turns into

∂

∂t
φ̃+

∂

∂t
h̃− ρ2s

d

dt
∇2
⊥φ̃+ v∗

∂φ̃

∂y
= 0

ρ2s
d

dt
∇2
⊥φ̃ = ρ2s

∂

∂t
∇2
⊥φ̃+ ρ2s

∂

∂r

〈
ṽr∇2

⊥φ̃
〉

= 0

(18)

Here, the non-adiabatic part does not contribute to the zonal flow, and again the normalization factors are

neglected eφ̃
Te
→ φ̃. If we use the approximation ñ = φ̃, the energetics of the internal wave energy then gives

∂

∂t
Eint,wave =

∂

∂t

∫
d3x

φ̃2

2

= −
∫
d3x

〈
φ̃
∂

∂t
h̃

〉
+

∫
d3x φ̃

d

dt
(ρ2s∇2

r〈φ〉)

= −
∫
d3x

〈
φ̃
∂

∂t
h̃

〉
− ρ2s

∫
d3x

〈
ṽr∇rφ̃

〉 ∂

∂r
∇r〈φ〉

(19)

The first term is the resonant electron coupling, that the non-adiabatic response results in electric work h̃φ
with appropriate phase shift.

The second term is the coupling to zonal corrugation (for ñ = φ̃, zonal flow and density corrugation are
following the same equation), which can be calculated through energy balance, ∂

∂tEwave,flow = − ∂
∂tEzonal,

and the calculation for zonal internal energy is the same as for eq.(15). If we notice that vy = −∇rφ̃, then

∂

∂t
Ezonal = ρ2s

∫
d3x

∂

∂t

(∇r〈φ〉)2

2
= ρ2s

∫
d3x

〈
ṽr∇rφ̃

〉 ∂

∂r
∇r〈φ〉 = ρ2s

∫
d3x 〈ṽrṽy〉 〈vy〉′ (20)

where the angular velocity, 〈vy〉′ = ∇r(−∇r〈φ〉) = ∇rvy, is just the radial shear of E ×B (circular) velocity
from the zonal flow. The energy input to the zonal flow is exactly the Reynolds’ power generated by the
Reynolds stress term.

In summary, the energy balance for the internal wave energy is now clear: one is the resonant electron
drive interaction; the other is the Reynolds power exerted on zonal mode. If we want to further include
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ion Landau damping, we need to include the parallel compression, ∇ · v → ∇⊥ · v⊥ + ∇‖ · v‖. The extra

contribution, −
∫
d3x〈φ̃∇‖ṽ‖〉, in eq.(19) needs to be calculated through ion drift-kinetic (or gyro-kinetic)

equation.
To calculate the non-adiabatic response, we start from the linearized electron drift-kinetic equation,

∂

∂t
f̃ + v‖∇‖f̃ −

e

B
∇φ× ẑ · ∇f0 −

e

me
E‖

∂

∂v‖
f0 = 0 (21)

Then, the perturbed distribution function is obtained,

f̃k =

c
B ikθφk

∂f0
∂r + e

me
(−ik‖)φk ∂f0∂v‖

−i(ω − k‖v‖)

=

c
B ikθφk

1
n0

∂n0

∂r f0 + e
me

i(ω−k‖v‖)−iω
v‖

φk
∂f0
∂v‖

−i(ω − k‖v‖)

=
−iω∗ − [i(ω − k‖v‖)− iω]

−i(ω − k‖v‖)
eφk
Te

f0

=

[
1− ω − ω∗

ω − k‖v‖

]
eφk
Te

f0

(22)

Here, we assumed that the electrons are following a Maxwellian distribution, f0 = n0

(
me

2πTe

)3/2
exp

[
−mev

2

2Te

]
,

and the diamagnetic frequency is defined as ω∗ = − 1
n0

∂n0

∂r
cTe

eB kθ. Note that ω
k‖vth

� 1, the non-adiabatic

response of resonant electrons is then calculated as h̃ =
∫
d3vf̃ − eφ̃

Te
.

h̃k = −ω − ω∗
k‖vth

eφk
Te

∫
d3v

vth
ω/k‖ − v‖

f0 = iπ
ω − ω∗
k‖vth

eφk
Te

[vthf0]|v‖= ω
k‖

(23)

The linear dispersion relation follows,

1 + k2⊥ρ
2
s + iπ

ω − ω∗
k‖vth

[vthf0]|v‖= ω
k‖
− ω∗

ω
= 0 (24)

Since the parallel streaming is much faster than the phase frequency, we can expect h̃ to be weakly coupled.
Thus have the linear instability

ωr =
ω∗

1 + k2⊥ρ
2
s

, iωi = −iπ ωr − ω∗
k‖vth(1 + k2⊥ρ

2
s)

[vthf0]|v‖ (25)

The growth rate is thus on the order of O( ω
k‖vth

), which is marginally unstable.

Now, we can move on to the quasi-linear theory,

∂

∂t
f̃ +

∂

∂r

〈
ṽrf̃
〉

+
∂

∂v‖

〈
− e

me
E‖f̃

〉
= 0 (26)

Multiply v2

2 and integrate over velocity space, we can get the energy conservation,

∂

∂t
Ep +

∂

∂r
Qr −

〈
E‖J‖

〉
= 0 (27)

The kinetic energy of electrons Ep is balanced with the turbulence heat flux Qr and the Ohmic heating〈
E‖J‖

〉
. This energy equation can be compared with the wave energy theorem, (people who are not familiar

with this may refer to Landau and Lifshitz, Electrodynamics of continuous media)

∂

∂t
Ew +

∂

∂r
Sr + 〈E · J〉 = 0 (28)
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the wave energy Ew is determined by the energy flux through boundary Sr and the electric power 〈E · J〉.
For details, the electron cooling provides the input of parallel eletric power, while the perpendicular power
is balanced with the Reynolds power,

〈E⊥ · J⊥〉 = 〈−∇⊥φ · J⊥〉 = 〈φ∇⊥ · J⊥〉 =

〈
−qn0ρ2sφ

d

dt
∇2
⊥φ

〉
(29)

We can see that this perpendicular energy is exactly the Reynolds power calculated in eq.(19).

7


	Review – drift-waves and zonal flow
	Background knowledge on energetics
	Energetics for drift-waves
	Energetics for collisionless drift-waves

